Search results for "Nerve Net"

showing 10 items of 140 documents

Different Brain Circuitries Mediating Controllable and Uncontrollable Pain.

2015

Uncontrollable, compared with controllable, painful stimulation can lead to increased pain perception and activation in pain-processing brain regions, but it is currently unknown which brain areas mediate this effect. When pain is controllable, the lateral prefrontal cortex (PFC) seems to inhibit pain processing, although it is unclear how this is achieved. Using fMRI in healthy volunteers, we examined brain activation during controllable and uncontrollable stimulation to answer these questions. In the controllable task, participants self-adjusted temperatures applied to their hand of pain or warm intensities to provoke a constant sensation. In the uncontrollable task, the temperature time …

0301 basic medicineAdultMaleNociceptionAdolescentPainPrefrontal CortexStimulus (physiology)AnxietyBrain mappingbehavioral disciplines and activities03 medical and health sciencesYoung Adult0302 clinical medicineSensationmedicineHumansThermosensingPrefrontal cortexAnterior cingulate cortexInternal-External ControlPain MeasurementCerebral CortexBrain MappingGeneral NeuroscienceBrainArticlesMagnetic Resonance ImagingHealthy VolunteersDorsolateral prefrontal cortex030104 developmental biologymedicine.anatomical_structureNociceptionFemaleNerve NetPsychologyInsulaNeuroscience030217 neurology & neurosurgerypsychological phenomena and processesThe Journal of neuroscience : the official journal of the Society for Neuroscience
researchProduct

Vestibular thalamus: Two distinct graviceptive pathways.

2015

Objective: To determine whether there are distinct thalamic regions statistically associated with either contraversive or ipsiversive disturbance of verticality perception measured by subjective visual vertical (SVV). Methods: We used modern statistical lesion behavior mapping on a sample of 37 stroke patients with isolated thalamic lesions to clarify which thalamic regions are involved in graviceptive otolith processing and whether there are distinct regions associated with contraversive or ipsiversive SVV deviation. Results: We found 2 distinct systems of graviceptive processing within the thalamus. Contraversive tilt of SVV was associated with lesions to the nuclei dorsomedialis, intrala…

0301 basic medicineAdultMaleStroke patientNerve netThalamusBiologyBrain mappingFunctional LateralityLesion03 medical and health sciences0302 clinical medicineThalamusmedicineHumansAgedVestibular systemBrain MappingMiddle AgedStroke030104 developmental biologymedicine.anatomical_structureVestibuleSpace PerceptionFemaleNeurology (clinical)Vestibule Labyrinthmedicine.symptomNerve NetNeuroscience030217 neurology & neurosurgeryThalamic lesionsNeurology
researchProduct

Inflammatory Response Mechanisms of the Dentine–Pulp Complex and the Periapical Tissues

2021

The macroscopic and microscopic anatomy of the oral cavity is complex and unique in the human body. Soft-tissue structures are in close interaction with mineralized bone, but also dentine, cementum and enamel of our teeth. These are exposed to intense mechanical and chemical stress as well as to dense microbiologic colonization. Teeth are susceptible to damage, most commonly to caries, where microorganisms from the oral cavity degrade the mineralized tissues of enamel and dentine and invade the soft connective tissue at the core, the dental pulp. However, the pulp is well-equipped to sense and fend off bacteria and their products and mounts various and intricate defense mechanisms. The fron…

0301 basic medicineCarcinogenesisRoot canalReviewimmune responselcsh:Chemistryodontoblast0302 clinical medicinePulpitislcsh:QH301-705.5SpectroscopyTissue homeostasisOdontoblastsPeriapical TissueIntracellular Signaling Peptides and ProteinsGeneral MedicineComputer Science ApplicationsCell biologyPeriradicularmedicine.anatomical_structureCarcinoma Squamous CellMouth NeoplasmsChemokinescarious lesionPeriapical GranulomaConnective tissueDental CariesBiologyNitric OxideCatalysisInorganic Chemistry03 medical and health sciencestertiary dentinestomatognathic systemAntigens NeoplasmmedicineAnimalsHumansddc:610Physical and Theoretical ChemistryApical foramenMolecular BiologyDental PulpRadicular CystNeuropeptidesOrganic ChemistryPulpitisMesenchymal Stem CellsComplement System Proteins030206 dentistryFibroblastsmedicine.diseasestomatognathic diseases030104 developmental biologyOdontoblastlcsh:Biology (General)lcsh:QD1-999DentinPulp (tooth)Nerve NetPeriapical PeriodontitisInternational Journal of Molecular Sciences
researchProduct

Autism Related Neuroligin-4 Knockout Impairs Intracortical Processing but not Sensory Inputs in Mouse Barrel Cortex

2016

Neuroligin-4 (Nlgn4) is a cell adhesion protein that regulates synapse organization and function. Mutations in human NLGN4 are among the causes of autism spectrum disorders. In mouse, Nlgn4 knockout (KO) perturbs GABAergic synaptic transmission and oscillatory activity in hippocampus, and causes social interaction deficits. The complex profile of cellular and circuit changes that are caused by Nlgn4-KO is still only partly understood. Using Nlgn4-KO mice, we found that Nlgn4-KO increases the power in the alpha frequency band of spontaneous network activity in the barrel cortex under urethane anesthesia in vivo. Nlgn4-KO did not affect single-whisker-induced local field potentials, but suppr…

0301 basic medicineCell Adhesion Molecules NeuronalCognitive NeuroscienceHippocampusNeocortexNeuroliginSensory systemIn Vitro TechniquesNeurotransmissionMice03 medical and health sciencesCellular and Molecular NeuroscienceGlutamatergic0302 clinical medicineAnimalsEvoked PotentialsSynapse organizationMice KnockoutNeuronsAfferent PathwaysNeurotransmitter AgentsChemistryBarrel cortexElectric StimulationVoltage-Sensitive Dye Imaging030104 developmental biologyAnimals NewbornVibrissaeExcitatory postsynaptic potentialNerve NetNeuroscience030217 neurology & neurosurgeryCerebral Cortex
researchProduct

Changes in the spatial distribution of the Purkinje network after acute myocardial infarction in the pig

2018

Purkinje cells (PCs) are more resistant to ischemia than myocardial cells, and are suspected to participate in ventricular arrhythmias following myocardial infarction (MI). Histological studies afford little evidence on the behavior and adaptation of PCs in the different stages of MI, especially in the chronic stage, and no quantitative data have been reported to date beyond subjective qualitative depictions. The present study uses a porcine model to present the first quantitative analysis of the distal cardiac conduction system and the first reported change in the spatial distribution of PCs in three representative stages of MI: an acute model both with and without reperfusion; a subacute …

0301 basic medicineCritical Care and Emergency MedicineSwinemedicine.medical_treatmentMyocardial InfarctionInfarction030204 cardiovascular system & hematologyPathology and Laboratory MedicineVascular MedicinePurkinje Cells0302 clinical medicineAnimal CellsIschemiaMedicine and Health SciencesTissue DistributionMyocardial infarctionNeuronsCardiomyocytesMultidisciplinaryQRHeartInfarctionDisease ProgressionCardiologyMedicineCellular TypesAnatomyElectrical conduction system of the heartResearch Articlemedicine.medical_specialtyHistologyScienceCardiologyMuscle TissueIschemiaMyocardial Reperfusion InjuryCatheter ablation03 medical and health sciencesSigns and SymptomsHeart Conduction SystemDiagnostic MedicineInternal medicinemedicineAnimalscardiovascular diseasesEndocardiumMuscle Cellsbusiness.industryBiology and Life SciencesCell Biologymedicine.diseaseElectrophysiologyBiological Tissue030104 developmental biologyVacuolizationCellular NeuroscienceReperfusionCardiovascular AnatomyNerve NetbusinessEndocardiumNeuroscience
researchProduct

Neuropharmacology of the mesolimbic system and associated circuits on social hierarchies

2018

Most socially living species are organized hierarchically, primarily based on individual differences in social dominance. Dominant individuals typically gain privileged access to important resources, such as food, mating partners and territories, whereas submissive conspecifics are often devoid of such benefits. The benefits associated with a high social status provide a strong incentive to become dominant. Importantly, motivational- and reward-related processes are regulated, to a large extent, by the mesolimbic system. Consequently, several studies point to a key role for the mesolimbic system in social hierarchy formation. This review summarizes the growing body of literature that implic…

0301 basic medicineDopamine AgentsHierarchy Social03 medical and health sciencesCellular and Molecular NeuroscienceNeuropharmacology0302 clinical medicineNeurochemicalLimbic SystemmedicineAnimalsHumansNeurochemistryNeuropharmacologyPharmacologyDopaminergic NeuronsVentral Tegmental AreaSocial stratification030104 developmental biologyDominance (ethology)AnxietyNerve Netmedicine.symptomPsychologyNeuroscience030217 neurology & neurosurgerySocial behaviorSocial statusNeuropharmacology
researchProduct

A quantitative structural and morphometric analysis of the Purkinje network and the Purkinje-myocardial junctions in pig hearts

2017

The morpho-functional properties of the distal section of the cardiac Purkinje network (PN) and the Purkinje-myocardial junctions (PMJs) are fundamental to understanding the sequence of electrical activation in the heart. The overall structure of the system has already been described, and several computational models have been developed to gain insight into its involvement in cardiac arrhythmias or its interaction with implantable devices, such as pacemakers. However, anatomical descriptions of the PN in the literature have not enabled enough improvements in the accuracy of anatomical-based electrophysiological simulations of the PN in 3D hearts models. In this work, we study the global dis…

0301 basic medicineHistologyPurkinje fibersNerve netSwinePurkinje cell030204 cardiovascular system & hematologyBiologyPurkinje Fibers03 medical and health sciencesBasal (phylogenetics)0302 clinical medicinemedicineAnimalsMolecular BiologyEcology Evolution Behavior and SystematicsMyocardiumDepolarizationHeartCell BiologyAnatomyOriginal ArticlesElectrophysiologymedicine.anatomical_structureTransitional Cell030101 anatomy & morphologyAnatomyElectrical conduction system of the heartNerve NetDevelopmental Biology
researchProduct

Network effects and pathways in Deep brain stimulation in Parkinson's disease.

2016

Deep brain stimulation of subthalamic nucleus (STN-DBS) became a standard therapeutic option in Parkinson's disease (PD), even though the underlying modulated network of STN-DBS is still poorly described. Probabilistic tractography and connectivity analysis as derived from diffusion tensor imaging (DTI) were performed together with modelling of implanted electrode positions and linked postoperative clinical outcome. Fifteen patients with idiopathic PD without dementia were selected for DBS treatment. After pre-processing, probabilistic tractography was run from cortical and subcortical seeds of the hypothesized network to targets represented by the positions of the active DBS contacts. The …

0301 basic medicineMaleDeep brain stimulationParkinson's diseaseNerve netmedicine.medical_treatmentDeep Brain Stimulationbehavioral disciplines and activities03 medical and health sciences0302 clinical medicineSubthalamic NucleusmedicineHumansAgedSupplementary motor areaMotor CortexBrainParkinson DiseaseMiddle AgedSMA*medicine.diseasenervous system diseasesElectrodes ImplantedSubthalamic nucleussurgical procedures operative030104 developmental biologymedicine.anatomical_structureDiffusion Tensor ImagingTreatment Outcomenervous systemFemalePrimary motor cortexNerve NetPsychologytherapeuticsNeuroscience030217 neurology & neurosurgeryDiffusion MRIAnnual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
researchProduct

Brain circuit-gene expression relationships and neuroplasticity of multisensory cortices in blind children.

2017

Sensory deprivation reorganizes neurocircuits in the human brain. The biological basis of such neuroplastic adaptations remains elusive. In this study, we applied two complementary graph theory-based functional connectivity analyses, one to evaluate whole-brain functional connectivity relationships and the second to specifically delineate distributed network connectivity profiles downstream of primary sensory cortices, to investigate neural reorganization in blind children compared with sighted controls. We also examined the relationship between connectivity changes and neuroplasticity-related gene expression profiles in the cerebral cortex. We observed that multisensory integration areas e…

0301 basic medicineMaleneuroplasticitySensory systemNerve Tissue ProteinsCREBBlindness03 medical and health sciences0302 clinical medicinechildrenNeuroplasticitymedicineGene familyHumansSensory deprivationChildMultidisciplinaryNeuronal Plasticitybiologyfunctional connectivityMultisensory integrationHuman brainSomatosensory CortexBiological Sciences030104 developmental biologymedicine.anatomical_structureGene Expression RegulationCerebral cortexbiology.proteinCREB familyFemaleNerve NetPsychologyNeuroscience030217 neurology & neurosurgery
researchProduct

2016

Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity pattern…

0301 basic medicineNeocortexNerve netCognitive NeuroscienceNeurogenesisNeuroscience (miscellaneous)Chemical synaptic transmissionBiologySensory Systems03 medical and health sciencesCellular and Molecular Neuroscience030104 developmental biology0302 clinical medicinemedicine.anatomical_structurenervous systemSubplateSynaptic plasticitymedicineExcitatory postsynaptic potentialPremovement neuronal activityNeuroscience030217 neurology & neurosurgeryFrontiers in Neural Circuits
researchProduct